About Matrices and Polyrhythms
DOI:
https://doi.org/10.62230/antec.v8i1.218Keywords:
composition, polyrhythmicity, matrices, matrix addition and subtraction, durational patternsAbstract
The present article aims to propose a method for composing polyrhythms using mathematics. To achieve this, we employ box notation and duration patterns to construct a rhythmic pattern with an accented pulse. This accented pulse, called the "axis pulse," moves along each position of the durational pattern notation, allowing us to obtain different rhythmic patterns. These patterns are grouped into a matrix, thus representing a polyrhythm. Subsequently, we propose matrix addition and subtraction as a creative resource to generate more polyrhythms. Finally, as a consequence of this composition method, we visually and symbolically represent the polyrhythms. A matrix can be analyzed as a system of linear equations, allowing us to graph it on the Cartesian plane.
Downloads
References
Arandia Riveros, M. A. (2012). Clasificación del uso de métricas irregulares, polirritmias, desplazamientos y modulaciones métricas a partir del análisis e interpretación de cinco temas de jazz y rock [Tesis de maestría, Universidad Distrital Francisco José de Caldas]. RIUD Principal. http://hdl.handle.net/11349/1130
Balakrishnan, V. K. (2000). Introductory discrete mathematics. Dover Publications.
Breslauer, P. (1988). Diminutional rhythm and melodic structure. Journal of Music Theory, 32(1), 1-21.
Cannas, S. (2018). Geometric representation and algebraic formalization of musical structures. [Tesis doctoral, Université de Strasbourg; Università degli studi di Pavia]. Portail HAL Theses. https://theses.hal.science/tel-02179522
Chapman, A. (1981). Some intervallic aspects of pitch-class set relations. Journal of Music Theory, 25(2), 275-290. https://doi.org/10.2307/843652
Forte, A. (1974). Structure of Atonal Music. Yale University Press.
Friedland, S. (2015). Matrices: Algebra, Analysis And Applications. World Scientific Publishing.
Gollin, E., & Rehding, A. (Eds.). (2014). The oxford handbook of Neo-Riemannian music theories. Oxford University Press.
Gómez-Martín, F. (2022). A review of Godfried Toussaint's The Geometry of Musical Rhythm. Journal of Mathematics and Music, 16(2), 239-247.
Herrera, E. (2022). Teoría Musical y Armonía Moderna vol. 1. Antoni Bosch Editor.
Lendvai, E. (2017). Bela Bartók. Un análisis de su música [Material Complementario]. http://sedici.unlp.edu.ar/handle/10915/73505
Monahan, C. B., & Carterette, E. C. (1985). Pitch and duration as determinants of musical space. Music Perception, 3(1), 1-32.
Morrill, T. (2023). On The Euclidean Algorithm: Rhythm Without Recursion. Bulletin of the Australian Mathematical Society, 107(3), 361-367.
Novotney, E. D. (1998). The 3: 2 relationship as the foundation of timelines in West African musics [Doctoral dissertation, University of Illinois at Urbana-Champaign].
Porter, L., DeVito, C., Wild, D., Fujioka, Y., & Schmaler, W. (2013). The John Coltrane reference. Routledge.
Randel, D. M. (Ed.). (2003). The Harvard dictionary of music: Fourth edition. Belknap Press.
Rentsch, A. (s.f.). Mathematical Investigations into Rhythm. La Trobe University.
Schneider, H., & Barker, G. P. (1989). Matrices and Linear Algebra. Dover Publications.
Teitelbaum, J., & Toussaint, G. (2006, 4-8 de agosto). RHYTHMOS: An interactive system for exploring rhythm from the mathematical and musical points of view.
En R. Sarhangi y J. Sharp (Eds.). Bridges London: Mathematics, Music, Art, Architecture, Culture. Londres.
Toussaint, G. (2002). A mathematical analysis of African, Brazilian, and Cuban clave rhythms. En R. Sarhangi (Ed.). Bridges London: Mathematics, Music, Art, Architecture, Culture. Londres.
Toussaint, G. (2005, 31 de julio - 3 de agosto). The Euclidean algorithm generates traditional musical rhythms. En R. Sarhangi y R. Moody (Eds.). Renaissance Banff: Mathematics, Music, Art, Culture, Alberta.
Toussaint, G. T. (2004, 10-14 de octubre). A Comparison of Rhythmic Similarity Measures. En International Society for Music Information Retrieval Conference - ISMIR, 5th International Conference on Music Information Retrieval Audiovisual Institute, Universitat Pompeu Fabra, Barcelona.
Toussaint, G. T. (2019). The geometry of musical rhythm: What makes a “good” rhythm good?, second edition (2nd ed.). CRC Press.
Tymoczko, D. (2006). The geometry of musical chords. Science, 313(5783), 72–74.
Tymoczko, D. (2011). A geometry of music: Harmony and counterpoint in the extended common practice. Oxford University Press.
Vaissière, J. (1991). Rhythm, accentuation and final lengthening in French. In Music, Language, Speech and Brain: Proceedings of an International Symposium at the Wenner-Gren Center, Stockholm, 5–8 September 1990 (pp. 108-120). Macmillan Education UK.
Vallejo, P. (1995). Del pulso a la polirritmia. Una experiencia creativa. Quodlibet, (2), 35-58.
Vázquez, H. (2006). Fundamentos teóricos de la música atonal. UNAM.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Antec: Revista Peruana de Investigación Musical
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.